Synthesis of a New Fucosidase Inhibitor, 1,5-Dideoxy-1,5-imino-L-talitol, via Cyanotrimethylsilanolysis of a β -D-Ribofuranoside and Its Inhibitory Activities

Hironobu HASHIMOTO and Michiya HAYAKAWA

Department of Life Science, Tokyo Institute of Technology,

Nagatsuta, Midori-ku, Yokohama 227

A new polyhydroxypiperidine of L-talo configuration was synthesized from benzyl tri-O-benzyl- β -D-ribofuranoside via ring-cleavage reaction with cyanotrimethylsilane and found to be an effective fucosidase inhibitor (Ki $10^{-5}-10^{-6}$ M).

Many polyhydroxylated piperidines and pyrrolidines have been shown to be powerful and specific glycosidase inhibitors. Among them 1,5-dideoxy-1,5-iminohexitol, azapyranose analog of hexose, shows a remarkable inhibitory activity against a glycosidase which hydrolyzes a hexopyranosyl residue having the same configuration as that of the 1,5-iminohexitol. $^{1-8}) \,$ In this communication the analog of L-talo configuration was first synthesized and the specific activity as inhibitor against $\alpha\text{-L-fucosidase}$ was found.

The reaction of cyanotrimethylsilane (TMSCN) with acetal in the presence of Lewis acids was first applied 9) to a glycoside, i.e., methyl tri-O-acetyl- β -D-ribofuranoside, giving the corresponding glucononitrile. This acyclic derivative is appropriate for construction of piperidine ring because nucleophilic aminomethyl group can be easily produced by reduction of the nitrile and 5-trimethylsilyl ether can be converted into a suitable leaving group.

Reaction of benzyl 2,3,5-tri-O-benzyl- β -D-ribofuranoside (1) with TMSCN (5 equiv.) in the presence of trifluoroborane etherate (0.1 equiv.) at room temperature for 2 h gave a mixture of acyclic ($\underline{2}$ and $\underline{3}$) and cyclic ($\underline{4}$) cyanides in a total yield of 96% with the ratio of 4:1. The amount of the de-O-silylated derivative $\underline{3}$ depends on conditions employed. Treatment of the mixture with iron (II) chloride gave $\underline{3}^{10}$ in 77% yield. The configuration of $\underline{2}$ proved to be D-allo by the chemical conversions as shown below, indicating that the ring cleavage of 1

occurred via an $\rm S^{}_N{}^2$ mechanism. On the other hand, the cyclic cyanide $\underline{4}$ was formed via a stereoselective $\rm S^{}_N{}^1$ reaction.

A conventional sulfonylation of $\underline{3}$ with methanesulfonyl chloride in pyridine gave the 5-mesylate $\underline{11}$ $\underline{5}$ in 97% yield. Reduction of $\underline{5}$ with lithium almimun hydride in ether at -13 °C for 12 h gave 1-amino-1-deoxy-D-allitol derivative $\underline{6}$, which was further heated under reflux in ethanol saturated with sodium acetate to give a 1,5-dideoxy-1,5-iminohexitol derivative $\underline{7}$ in 46% yield. The iminohexitol $\underline{7}$ was characterized as the corresponding N-acetyl derivative $\underline{12}$ $\underline{8}$.

De-O-benzylation of $\underline{7}$ was performed smoothly by hydrogenolysis in the presence of palladium/carbon after conversion into the corresponding hydrochloride $\underline{9}$ to give 1,5-dideoxy-1,5-imino-L-talitol hydrochloride $\underline{13}$) ($\underline{10}$) in 70% yield. All coupling constants of the ring protons of $\underline{10}$ indicate axial-equatorial or equatorial-equatorial relation, and the L-talo configuration and the 1C conformation were confirmed. On the other hand, the compound $\underline{8}$ exists in a skew boat conformation, ${}^2\mathrm{S}_3$.

The inhibitory activity of $\underline{10}$ toward the following glycosidases was examined: α -glycosidase from brewers yeast, β -glucosidase from almond, α -galactosidase from green-coffee bean, β -galactosidase from Aspergillus niger, α -mannosidase from jack bean, α -fucosidase from bovine epididymis and bovine kidney. The corresponding p-nitrophenyl glycosides were used as substrates except the o-nitrophenyl glycoside for β -galactosidase.

The concentrations of $\underline{10}$ for 50% inhibition of hydrolysis are summarized in Table 1. An unexpectedly strong inhibitory activity was observed toward α -fucosidases, while weak inhibitory activities were observed toward α -glucosidase and β -galactosidase. The mode of inhibition for β -glucosidase is uncompetitive, ¹⁴⁾ while those for α -fucosidases are competitive, ¹⁴⁾ giving Ki = 1.1 x 10⁻⁵ M (bovine epididymis) and Ki = 7 x 10⁻⁶ M (bovine kidney).

It is noteworthy that the iminohexitol $\underline{10}$ shows the remarkable and specific inhibitory activities toward α -fucosidases, although the structure of $\underline{10}$ is different from L-fucose except the ring atom in two points, i.e., non-deoxygenation at C-6 and inverted configuration at C-2.

Chemistry Letters, 1989

Table 1.	Inhibitory activity 15) of 1,5-dideoxy-1,5-imino-L-talitol
	toward several glycosidases

Glycosidase	Origin	50% inhibition M	Ki M
α-glucosidase	brewers yeast	3 x 10 ⁻³	uncompetitive
β-glucosidase	almond	NI ^{a)}	
α -galactosidase	green-coffee bean	NI	
β-galactosidase	Aspergillus niger	NI _{p)}	
α-mannosidase	jack bean	NI	
α-L-fucosidase	bovine epidydimis	2.7×10^{-5}	1.1×10^{-5}
α-L-fucosidase	bovine kidney	8×10^{-5}	7×10^{-6}

- a) Less than 50% inhibition at 5.3 \times 10⁻³ M.
- b) Slightly lower than 50% inhibition at 5.3 \times 10⁻³ M.

References

- 1) The inhibitory activities of 1,5-dideoxy-1,5-iminohexitols having the following configurations were reported: D-gluco against α -D-glucosidase 2 ,3) (IC 50 1.9x10 $^{-4}$ M) and β -D-glucosidase 2 ,3) (IC 50 8.1x10 $^{-5}$ M), and its 2-acetamido analog against β -N-acetylglucosaminidase 4) (Ki 2.3x10 $^{-7}$ M) D-manno against α -D-mannosidase 5) (IC 50 1.5x10 $^{-4}$ M) and α -L-fucosidase 5) (IC 50 2.2x10 $^{-5}$ M), D-galacto against α -D-galactosidase 6 ,7) (Ki 1.6x10 $^{-9}$ M), 6-deoxy-L-galacto against α -L-fucosidase 8) (Ki 4.8x10 $^{-9}$ M).
- 2) M. P. Dale, H. E. Ensley, K. Kern, K. A. R. Sastry, and L. D. Byers, Biochemistry, 24, 3530 (1985).
- 3) U. Fuhrmann, E. Bause, and H. Ploegh, Biochem. Biophys. Acta, 825, 95 (1985).
- 4) G. W. J. Fleet, P. W. Smith, P. J. Nash, L. E. Fellows, R. B. Parekh, and T. W. Rademacher, Chem. Lett., 1986, 1051.
- 5) A. D. Elbein, G. Legler, A. Tlutsy, W. McDowell, and R. Schwarz, Arch. Biochem. Biophys., 235, 579 (1984).
- 6) H. Paulsen, Y. Hayauchi, and V. Sinnwell, Chem. Ber., <u>113</u>, 2601 (1980).
- 7) R. C. Bernotas, M. A. Pezzone, and B. Ganem, Carbohydr. Res., 167, 305 (1987).
- 8) G. W. J. Fleet, A. N. Shaw, S. V. Evans, L. E. Fellows, J. Chem. Soc., Chem. Commun., <u>1985</u>, 841.
- 9) K. Uchimoto and T. Horie, Tetrahedron Lett., 23, 237 (1982).
- 10) When the riboside $\underline{1}$ was treated with 5 equiv. TMSCN and 0.1 equiv. BF $_3$ OEt $_2$, $\underline{2}$ and $\underline{3}$ were obtained in 25% and 52% yields, respectively. All new compounds were characterized by elemental analysis and spectroscopic data. Compound $\underline{3}$: [α] $_D$ +59.6° (c 1.7, CHCl $_3$); 1 H-NMR data: δ 3.36 (dd, $J_{5,6a}$ =5.7 Hz, H-6a), 3.46 (dd, $J_{5,6b}$ =4.2 Hz, H-6b), 3.70 (t, $J_{3,4}$ = $J_{4,5}$ =4.7 Hz, H-4), 4.04 (dt, H-5), 4.05 (dd, $J_{2,3}$ =9.0 Hz, H-3), 4.56 (d, H-2), 4.56, 4.80; 4.60, 4.84 (each ABq, CH $_2$ in Bn), 4.40 and 4.60 (each s, CH $_2$ in Bn), 7.26-7.30 (Ph); 1 3C-NMR data: δ

Chemistry Letters, 1989

- 78.77, 78.62, 70.13, 69.79 (each CH), 74.19, 73.79, 73.31, 72.57, 70.87 (each CH₂), 117.14 (CN), and 137.77-127.77 (aromatic carbons).
- 11) Compound 5: 1 H-NMR data (500 MHz): δ 4.55 (d, $J_{2,3}$ =3.8 Hz, H-2), 3.97 (dd, $J_{3,4}$ =6.7 Hz, H-3), 3.89 (dd, $J_{4,5}$ =3.1 Hz, H-4), 5.07 (ddd, $J_{5,6}$ =7.3 Hz, $J_{5,6}$ =3.4 Hz, H-5), 3.67 and 3.55 (each dd, $J_{6,6}$ =11.2 Hz, H-6 and H-6'), 2.93 (s, MS), 4.71-4.39 (ABq x4, CH₂ in Bn) and aromatic protons.
- 12) Compound 8: $[\alpha]_D$ -13.5° (c 1.5, CHCl₃); ¹H-NMR data: δ 2.88 (t, J_{1,1} = J_{1,2}=12.0 Hz, H-1), 3.25 (ddd, J_{1,2}=5.0 Hz, J_{1,3}=2.1 Hz, H-1'), 4.72 (dd, H-2), 4.09 (dd, J_{3,4}=2.2 Hz, H-3), 3.38 (dd, J_{4,5}=6.0 Hz, H-4), 4.19 (ddd, J_{5,6}=11.0 Hz, J_{5,6}:=2.1 Hz, H-5), 3.89 (dd, J_{6,6}:=11.0 Hz, H-6), 4.00 (dd, H-6'), 2.10 (s, Ac), 4.85-4.37 (ABq x4, CH₂ in Bn) and aromatic protons.
- 13) Compound <u>10</u>: 2.63 (d, $J_{1,1}$ =14 Hz, H-1), 2.89 (dd, $J_{1,2}$ =3.4 Hz, H-1'), 3.21 (t, $J_{2,3}$ =3.4 Hz, H-2), 3.52 (bd, H-3), 3.60 (s, H-4), 2.77 (t, $J_{5,6}$ =7.0 Hz, H-5), 3.24 (d, 2H, H-6 and H-6').
- 14) The modes of inhibition were ascertained from the Dixon plots.
- The assay method of glycosidase activity was essentially that reported by 15) Evans et al. 16) A typical procedure in the case of $\alpha\text{-glucosidase}$ (Sigma G-4634): 200 μ l enzyme in 50 mM citrate buffer, pH 6.0 (7 mg/ml); 200 μ l 2.2 -3.6 mM p-nitrophenyl α -D-glucoside; 200 μ l 1.6x10 $^{-2}$ - 10 $^{-6}$ M 10. 12 min, 25 °C. Added 1 ml 50 mM glycine-NaOH buffer, pH 10.1. Read 400 nm. β -Glucodidase (Sigma G-8625): 200 μ l enzyme in 50 mM citrate buffer, pH 4.8 (1 mg/ml); 200 μ l 1.9 mM p-nitrophenyl β -D-glucobside; followed by the same α -Galactosidase (Sigma G-8507): 200 μ l enzyme procedure as described above. in 50 mM citrate buffer, pH 4.0 (2 mg/ml); 200 μ l 4.4 mM p-nitrophenyl α -Dgalactoside; 200 µl 10. Incubated 10 min, 25°. Followed by the same procedure β -Galactosidase (Sigma G-9132): 200 μ l enzyme in 50 mM as described above. citrate buffer, pH 4.0 (6 mg/ml); 200 μ l 2.1 mM o-nitrophenyl β -D-galactoside; Followed by the same procedure as described for α -galactosidase. α -Mannosidase (Sigma M-7257): 200 μ l enzyme in 50 mM citrate guffer, pH 4.5 (2.5 mg/ml); 200 μl 3 mM p-nitrophenyl α -D-mannoside; Followed by the same procedure as described for α -glucosidase. α -L-Fucosidase (Sigma F-7753): 200 μ l enzyme in 50 mM citrate buffer, pH 5.8 (5 mg/ml); 200 μ l 2 mM p-nitrophenyl α -Dfucoside; Followed by the same procedure as described for α -galactosidase. α -L-Fucosidase (Sigma F-5884): 200 μ l emzyme in 50 mM citrate buffer, pH 5.5 (1 mg/ml); 200 μ l 3 mM p-nitrophenyl α -D-fucoside; Followed by the same procedure as described for α -galactosidase. All substrates were purchased from Seikagaku Kogyo Co. Ltd., dissolved in dimethyl sulfoxide (DMSO) and diluted (0.5% DMSO).
- 16) S. V. Evans, L. E. Fellows, T. K. M. Shing, and G. W. J. Fleet, Phytochemistry, 24, 1953 (1985).

(Received August 16, 1989)